#database#scalability#backend

Database Scaling Strategies: From Single Node to Sharding

A comprehensive guide to database scaling strategies including vertical scaling, read replicas, partitioning, and sharding for high-traffic applications.

2 min read
Table of Contents

The Scaling Journey

Every successful application eventually faces the same challenge: the database becomes a bottleneck. Here’s a systematic approach to scaling your database.

Level 1: Vertical Scaling

The simplest approach — get a bigger machine.

Before: 4 CPU, 16GB RAM, 100GB SSD
After:  32 CPU, 128GB RAM, 2TB NVMe

Pros: No code changes, no complexity Cons: Expensive, has hard limits

Level 2: Read Replicas

Separate read and write traffic:

class DatabaseRouter {
  private primary: Connection;
  private replicas: Connection[];

  query(sql: string, isWrite: boolean) {
    if (isWrite) {
      return this.primary.execute(sql);
    }
    // Round-robin across replicas
    const replica = this.replicas[
      Math.floor(Math.random() * this.replicas.length)
    ];
    return replica.execute(sql);
  }
}

Level 3: Sharding

Distribute data across multiple databases:

function getShardKey(userId: string): number {
  const hash = crypto
    .createHash("md5")
    .update(userId)
    .digest("hex");
  return parseInt(hash.slice(0, 8), 16) % NUM_SHARDS;
}

Choosing the Right Strategy

TrafficStrategyComplexity
< 10K QPSVertical scalingLow
10-100K QPSRead replicasMedium
100K+ QPSShardingHigh

Conclusion

Start simple. Optimize queries first. Add indexes. Use caching. Only shard when you’ve exhausted simpler options. Premature sharding is one of the most expensive mistakes in system design.